南方科技大学是由中国广东省领导和管理、深圳市举全市之力创建的一所公办创新型大学,目标是迅速建成国际化高水平研究型大学,建成中国重大科学技术研究与拔尖创新人才培养的重要基地……

南方科技大学以学分制、导师制、书院制为基础,以人才培养的个性化、小班化、国际化为特色,通过为一流的人才培养体系,培养人格健全、基础扎实、能力突出、具有国际视野、社会责任感、创新精神和实践能力的高素质人才。

南方科技大学被确定为国家高等教育综合改革试验校。2012年4月,教育部同意建校,并赋予学校探索具有中国特色的现代大学制度、探索创新人才培养模式的重大使命。

南方科技大学对本科学生采用书院制管理模式,以书院、团委、社团等平台为载体,为学生营造了精彩的大学生活。

南科大已初步建成国际交流的平台,与国际知名大学在人才培养、教学科研等方面达成合作协议,为学生开展境外交流学习。同时,学校积极与内地的多个机构开展全方位合作。

南方科技大学本科招生采用基于高考的综合评价录取模式,即高考成绩占60%,我校自主组织的能力测试成绩占30%(其中面谈成绩为5%),高中学业水平考试成绩占10%,按考生“631”综合成绩排名从高到低录取。综合评价录取模式由我校在2012年率先实施。

南科大教育基金会由理事会、监事会、秘书处组成。理事会是基金会的最高权力机构;监事会负责检查财务和会计资料,监督理事会遵守法律和章程的情况;秘书处是基金会常设办事机构,在理事会领导下负责基金会的日常工作。

学校党委切实履行党建工作职责,不断强化班子建设和基层党组织建设,充分发挥好党委对学校各项工作的核心统领作用和各党支部的战斗堡垒作用,切实开展组织统战和党风廉政建设各项工作。学校高度重视群团组织建设,充分调动全体师生员工积极性,维护教职工的合法权益,推进学校民主管理,促进学校健康发展,全力营造齐心协力、团结向上、奋发有为的干事创业氛围。

新闻信息

首页 > 新闻动态 > 新闻信息 > 南科大材料系梁永...

新闻信息

南科大材料系梁永晔课题组在近红外二区荧光探针研究取得新突破

2018-03-27 科研新闻

       近日,南方科技大学材料科学与工程系副教授梁永晔课题组相继在国际知名学术期刊《Journal of the American Chemical Society》(影响因子13.858)、《Nature Communications》(影响因子12.124)和《Advanced Materials》(影响因子19.791)发表研究论文,报道课题组在生物成像应用的近红外二区分子荧光探针方向取得的新突破。

       相对于传统的基于可见光以及近红外一区(NIR-I, 750-900nm)荧光生物成像技术,最近发展的近红外二区(NIR-II,1000nm~1700nm)荧光成像由于发射波长更长,可显著降低光在穿透生物组织中的散射现象以及自荧光效应的影响,使探测深度更深、空间分辨率更高。该技术发展的瓶颈是缺少具有高亮度与生物相容性的荧光染料。梁永晔课题组在前期工作中发展了S-D-A-D-S(S,shielding unit,屏蔽单元;D,donor,电子给体单元;A,acceptor,电子受体单元)型荧光分子结构,开发了分子探针IR-E1(Adv. Mater.,2016, 28,6872)和IR-FEP(Adv. Mater., 2017,29,1605497),它们在水中的荧光量子产率分别为0.7 %和2.0%。虽然这在相关材料中已具有较好的发光性能,但要实现高效的时间和空间分辨率仍需要更亮的材料。

       梁永晔课题组进一步研究了分子给体单元调控对荧光性能的影响(图1)。由于染料发射波长越长越有利于增加穿透深度,于是增加了一个连接S单元的噻吩作为第二给体(D2)。噻吩的引入可以增加分子的共轭长度从而使荧光波长红移,但导致QY下降。进一步对连接受体A的第一给体单元(D1)进行结构调控,首次以辛烷噻吩作为D1。相对应的染料IR-FTAP在水溶液中QY高达5.3%,明显优于其它给体单元。

 
图1.给体调控策略

       通过分子动力学模型与密度泛函理论的计算,发现憎水性的辛烷噻吩相较于其它D1单元可以有效减少共轭骨架中心与水分子的作用(图2b,c)。计算结果也进一步证明了水中的QY与骨架中心与水分子的相互作用紧密联系。

图2.(a)IR-FTAP与IR-FTTP与水分子作用的分子动力学模拟;(b)在分子骨架2 Å上方水分子的作用势能模拟。


图3. 小鼠下肢血管成像图

       在初步的荧光成像应用中,IR-FTAP的高QY使得它在小鼠下肢血管的高速成像(>25帧/秒)中展示了更好的空间分辨率(图3)。相关结果已发表在《Journal of the American Chemical Society》,题目为“Donor Engineering for NIR-II Molecular Fluorophores with Enhanced Fluorescent Performance”。

       基于前期研发的IR-FE在甲苯中的QY(31%)远高于PEG化的IR-FEP在水中的QY(2.0%),梁永晔课题组及合作者于是尝试将IR-FE包裹到两亲高分子基底中得到高亮度且生物相容的染料。两亲性的PEG嫁接聚苯乙烯(PS-g-PEG)被合成,它可以通过自组装将IR-FE包裹起来,形成p-FE纳米染料(图4)。PS中心具有甲苯溶解IR-FE的微环境从而保持高QY,向外伸展的PEG侧链则可提供水溶性及生物相容性。p-FE在PBS等水溶液中展现了很好的溶解性,平均粒径为12nm。在PBS中p-FE的吸收和发射谱与IR-FE类似,QY测定为16.5%,是目前基于有机材料的近红外二区荧光探针在水溶液中的最高QY值。


图4. p-FE的形成示意图以及相关的水溶液性质


图5. 小鼠脑部血流及其3D共聚焦逐层成像图

       基于p-FE的高QY,成功实现了曝光时间只需2ms的无创超快小鼠脑部血流的NIR-II成像。p-FE还被应用于NIR-II的3D共聚焦逐层成像,可以解析小鼠脑部细至5-7微米的血管,探测深度达到1.3毫米(图5)。这是目前基于单光子小鼠脑部3D荧光成像的最深探测深度。相关结果已发表在《Nature Communications 》,题目为“A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues ”。

       梁永晔课题还在IR-FE分子的基础上引入一条PEG链并在其他三条侧链引入羧基得到分子IR-FEPC。IR-FEPC可以高效的与重组人绒毛膜促性腺激素共价连接。斯坦福大学戴宏杰课题组等成功将这一探针应用于卵巢三个阶段的促黄体生成激素受体的特异成像(图3)。相关结果已发表在《Advanced Materials》,题目为“3D NIR‐II Molecular Imaging Distinguishes Targeted Organs with High‐Performance NIR‐II Bioconjugates”。


图6. 荧光探针IR-FEPC及其应用于卵巢三个阶段的促黄体生成激素受体的特异成像图。

       南方科技大学为前两项工作的第一通讯单位。这些工作的合作者包括斯坦福大学戴宏杰教授组(生物成像)、华东师范大学孙海涛教授组(理论计算)、天津大学张晓东教授组(生物安全性评价)等。工作得到了中组部青年千人计划、深圳市孔雀团队、重点实验室项目以及技术攻关项目等支持。

       链接:https://pubs.acs.org/doi/abs/10.1021/jacs.7b10334

       链接:https://www.nature.com/articles/s41467-018-03505-4

       链接:https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201705799

供稿:材料系

© 2015 All Rights Reserved. 粤ICP备14051456号 地址:广东省深圳市南山区学苑大道1088号 电话:+86-755-8801 0000 邮编:518055
*为必填项